Transform Data into Wisdom

Draw insights. Take actions.

Data analytics platform powered by generative AI and bio-inspired knowledge graphs

Discover the gIQ advantage

Insightful.
qIQ seamlessly converts raw data into profound wisdom, through a fusion of automated Gen AI processes and associative knowledge graph structures.
Instinctive.
qIQ illuminates the path to applicable knowledge within complex data landscapes guiding users towards naturally drawn insights and informed actions.
Streamlined.
Designed to handle large datasets with ease, gIQ enables to leverage the power of Generative AI at scale efficiently and effectively.

Platform Capabilities

gIQ integrates LLMs potential and biologically inspired associative knowledge graphs into a coherent system that allows for fast and accurate identification of connections, correlations and patterns in data, enabling better decision-making.

gIQ Workflows

Define and run LLM-driven workflows

Extract information from unstructured data

Categorize, summarize and classify with built-in and custom prompts

Prepare enriched datasets for further analysis

Define and run LLM-driven workflows

Extract information from unstructured data

Categorize, summarize and classify with built-in and custom prompts

Prepare enriched datasets for further analysis

gIQ Studio

Perform advanced analytics with graph AutoML tools

Make predictions, detect anomalies, identify clusters

Find frequent patterns and association rules

Explore data relationships reflected in knowledge graph structure

Use cases

Manufacturing
Supply chain optimization
Assembly line operations optimization
Quality control enhancement
Banking & Finance
Customer lifetime value prediction
Credit scoring
Fraud detection
Insurance
Risk assessment
Fraud detection
Healthcare
Patient risk prediction
Operational efficiency optimization
Market Research
Consumer behavior analysis
Segmentation studies
Sentiment analysis
Retail
Customer personalization
Inventory management
Sales & price forecasting

Key Benefits

Immediate Insights
Reveal and visualize implicit patterns and correlations within data, reflected directly in the knowledge graph structure.
By analyzing the structure and topology of the knowledge graph, one can uncover hidden insights, such as how certain entities influence each other or how they cluster together based on shared attributes or interactions. Such visual and structural approach to data analysis facilitates a deeper understanding of the data's underlying dynamics.
In-Depth Analysis
Employ LLMs to enrich raw datasets and uncover deep insights beyond surface-level analysis.
Large Language Models excel at revealing information that might not be immediately obvious, thereby providing a more nuanced understanding of the input data. This deep dive into the data not only helps in making informed decisions but also unveils opportunities for innovation and optimization.
Rapid Outcomes
Accelerate data analysis and receive results faster without the heavy computational load of traditional ML modelling.
Graph-based analytics offer a powerful alternative to traditional ML models by focusing on the relationships and connections between data points. Associative graph algorithms use knowledge about the data reflected in the graph structure to infer patterns, identify anomalies and quickly deliver other valuable insights without the computational overhead associated with ML algorithms, which require extensive computation, training, and tuning.
Request demo
Featured stories
Learn how gIQ enhances data analytics
Boosting market intelligence with Gen AI
Company: A independent research, assessment and strategic advisory services provider focused on the automotive sector.
Industry: Market Research & Consulting

A global research and consulting company wants to enhance its automotive market research capabilities with Large Language Models (LLMs). By scanning a variety of data sources, the firm identifies emerging trends in automotive technology and compiles comprehensive quarterly reports.

gIQ serves as a well-suited solution to that need by enabling the firm to empower product planners and strategists with the confidence and clarity necessary for making informed decisions.

gIQ Workflows are instrumental in extracting pivotal information from blog posts, media articles, and other unstructured sources, focusing on leading technology trends within the automotive sector. This process of enrichment yields a detailed log of raw signals, indicating the involvement of automakers (OEMs) in specific technologies. This signals log is then processed through gIQ Studio, where graph visualization tools facilitate the identification and examination of technology roadmaps for each OEM. These roadmaps detail expected launch dates and provide an industry-wide overview of anticipated technology rollouts.

By combining Generative AI automation with advanced graph analytics, the company is able to not only expedite the report creation process, but also significantly enhance the precision of technology launch signal detection for both individual OEMs and the whole automotive industry.

Fail Fast, Improve Faster: Enhancing Manufacturing Test Processes
Company: A motion control technology company delivering solutions for automotive OEMs.
Industry: Automotive, Manufacturing

A company specializing in motion control technology is looking to harness the power of data analytics to refine their testing procedures. As a global supplier of steering and driveline systems, as well as software for OEMs, they are facing challenges with the efficiency of backdrive testing stations in one of their production lines.

Their objective is to leverage data from preceding stations to dynamically fine-tune the operational parameters of backdrive machines, aiming to lower rejection rates and boost process efficiency. The ultimate goal is to design and implement an AI-driven solution that yields tangible enhancements in efficiency and accuracy, thereby reducing total costs.

gIQ played a pivotal role in pinpointing the critical gap in their strategy, which was the quality and sufficiency of the input data. It became evident that the data collected from the testing stations along the manufacturing line was inadequate for a thorough understanding of the entire process, including the configuration of prior steps and their influence on the backdrive machine settings.

Thanks to the graph associative algorithms integrated into gIQ Studio, the company was able to swiftly determine the impracticality of their initial plan. This insight helped them avoid the expensive and time-consuming process of trial and error in machine learning modeling and implementation with inadequate input data.

Revolutionizing the Used Car Market Analysis with Associative Knowledge Graphs
Company: An R&D division of a global OEM focusing on mobility solutions
Industry: Automotive

The US research division of a leading Japanese OEM faced significant challenges in accurately understanding and representing the complex and dynamic nature of the American used car market. Traditional analytical models and data structures were inadequate in capturing the intricate relationships and patterns that define the market.

The gIQ platform, with its advanced associative knowledge graphs capabilities, introduced an innovative approach to deciphering the used car market. It achieved this by mapping out the intricate relationships between vehicle specifications and broader market trends. Leveraging over one million vehicle listings from cars.com, along with additional datasets such as CO2 emissions and EV charger locations, the gIQ platform enabled a level of comprehensive analysis previously unattainable with conventional methods.

Employing the gIQ platform allowed the OEM to accurately predict used car prices by delineating the complex interconnections within the market. This capability was crucial in developing a configurable recommendation system. Utilizing the knowledge graphs, the system could provide personalized vehicle suggestions to potential buyers, markedly improving the user experience.

Meet the Founders

At the core of gIQ stands a team of dedicated, driven and passionate professionals. We bring a wealth of experience as visionary leaders, AI enthusiasts and seasoned entrepreneurs who have already steered multiple companies to success.

gIQ emerged from our collective vision, inspired by the challenges we faced in diverse customer engagements.

Drawing upon a rich tapestry of experiences, deep insights, and groundbreaking scientific research we have crafted a solution that addresses the real-world complexities of data analytics.

gIQ embodies our commitment to transforming challenges into opportunities for innovation and progress.

Konrad Siatka
CEO
Roman Swoszowski
CPO
Daniel Bulanda
CTO
Unlock your data potential. Request your demo today.
Your request has been received, please await contact of our sales representative.
Oops! Something went wrong while submitting the form.

Company information

Headquarters

gIQ sp. z o.o.


NIP: 6751796936
Hetmana Żółkiewskiego 17A

31-539 Kraków, Poland


Platform OverviewFeaturesWhy gIQCase studyAbout UsContact
© Copyright by gIQ 2024
Cookies PolicyPrivacy Policy